神经网络:文本分类
由于需要学习语音识别,期间接触了深度学习的算法。利用空闲时间,想用神经网络做一个文本分类的应用, 目的是从头到尾完成一次机器学习的应用,学习模型的优化方法,同时学会使用主流的深度学习框架(这里选择tensorflow)。
2017-05-01
由于需要学习语音识别,期间接触了深度学习的算法。利用空闲时间,想用神经网络做一个文本分类的应用, 目的是从头到尾完成一次机器学习的应用,学习模型的优化方法,同时学会使用主流的深度学习框架(这里选择tensorflow)。
2017-05-01
原文:Deep Neural Networks for Acoustic Modeling in Speech Recognition
DNN 包含多个隐层和大数量的输出单元,这适应了大量的HMM状态(由多个不同的三音节HMM状态建模产生,即同时考虑了音素及其两侧。)。即使大多数三音节HMM被绑定在一起,仍有成千的被绑定的状态。
2017-04-09
本文通过简单kaldi源码,分析DNN训练声学模型时神经网络的输入与输出。在进行DNN训练之前需要用到之前GMM-HMM训练的模型,以训练好的mono模型为例,对模型进行维特比alignement(对齐),该部分主要完成了每个语音文件的帧到transition-id的映射。
不妨查看对齐后的结果:
2017-04-01
在不深究具体过程的前提下理一理语音识别中特征提取的基本过程,并通过kaldi对该过程进行操作,得出相应结果。以梅尔倒普系数MFCC为例,对于语音信号,处理如下:
2017-03-20
2017-03-08